This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
reference:fault_current [2024/09/20 00:25] – removed - external edit (Unknown date) 127.0.0.1 | reference:fault_current [2024/09/20 00:34] (current) – [References] Alan Shea | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ======Estimating Fault Current Availability===== | ||
+ | |||
+ | Short-circuit current available in bolted-fault conditions. The system fault current is the sum of all connected source fault currents. | ||
+ | |||
+ | =====Utility Transformers==== | ||
+ | |||
+ | For utility transformers, | ||
+ | \\ | ||
+ | |||
+ | ===Three-Phase Fault== | ||
+ | <WRAP col2> | ||
+ | <m 14>I ~ = ~ {kVA * 1000}/ | ||
+ | <m 14>I3p ~ = ~ I / {Z1}</ | ||
+ | |||
+ | <m 14>I3p ~=~ {kVA * 1000}/ | ||
+ | </ | ||
+ | \\ | ||
+ | |||
+ | For example, a 630kVA/ | ||
+ | <WRAP col2> | ||
+ | <m 14>I ~ = ~ {630kVA * 1000}/ | ||
+ | |||
+ | <m 14>I3p ~ = ~ 910 / 0.0576 ~ = ~ 15,833 ~ Amps</ | ||
+ | </ | ||
+ | \\ | ||
+ | ---- | ||
+ | ===Phase to Phase Fault== | ||
+ | <WRAP col2> | ||
+ | <m 14>Ipp ~=~ I / {(Z1 + Z2)}</ | ||
+ | \\ \\ | ||
+ | <m 14>Ipp ~=~ {kVA * 1000} / {V * (Z1 + Z2)}</ | ||
+ | \\ \\ | ||
+ | <m 14>Ipp ~=~ {630 * 1000} / {400 * (0.0576 + 0.0576)} ~=~ 13,671 ~Amps</ | ||
+ | \\ | ||
+ | </ | ||
+ | \\ | ||
+ | ---- | ||
+ | ===Phase to Neutral Fault== | ||
+ | <WRAP col2> | ||
+ | <m 14>Ipn ~=~ {3 * I}/ {(Z0 + Z1 + Z2)}</ | ||
+ | \\ \\ | ||
+ | <m 14>Ipn ~=~ {3*VA} / {sqrt{3} * V * (Z0 + Z1 + Z2)}</ | ||
+ | \\ \\ | ||
+ | <m 14>Ipn ~=~ {3 * (630 * 1000)}/ | ||
+ | \\ | ||
+ | </ | ||
+ | \\ | ||
+ | ---- | ||
+ | \\ | ||
+ | |||
+ | <WRAP center 650px> | ||
+ | | **Voltage: | ||
+ | | <m 14> | ||
+ | | **Positive Sequence Impedance: | ||
+ | | **Negative Sequence Impedance: | ||
+ | | **Zero Sequence Impedance: | ||
+ | </ | ||
+ | |||
+ | =====Generators==== | ||
+ | |||
+ | The three-phase bolted fault current from a generator is roughly the rated ampacity of the generator, divided by the subtransient reactance of the machine at that rating. Subtransient reactance is noted on the manufacturer' | ||
+ | |||
+ | ===Three-Phase Bolted Fault=== | ||
+ | For example, with a 200kW/ | ||
+ | |||
+ | \\ | ||
+ | <WRAP col2> | ||
+ | <m 14>I ~ = ~ {kW * 1000}/ | ||
+ | \\ \\ | ||
+ | <m 14>I ~ = ~ {200kW * 1000}/ | ||
+ | \\ | ||
+ | </ | ||
+ | \\ | ||
+ | <WRAP col2> | ||
+ | <m 14>I3p ~ = ~ I / {X prime prime d}</ | ||
+ | \\ | ||
+ | <m 14>I3p ~ = ~ 300 / 0.12 ~ = ~ 2,500 ~ Amps</ | ||
+ | </ | ||
+ | \\ | ||
+ | |||
+ | ===Single Phase - Neutral Bolted Fault=== | ||
+ | A single phase-neutral bolted fault may have higher short-circuit current than a Line-Line fault on wye-connected generators with 2/3 pitch windings. The product of the three phase currents divided by the sum of the Subtransient Reactance (// | ||
+ | |||
+ | For a generator with full load current at 200 kW, 480 volts, 60 Hz of 300 amps: | ||
+ | |||
+ | <WRAP col2> | ||
+ | * Subtransient Reactance (// | ||
+ | * Negative Sequence Reactance (// | ||
+ | * Zero Sequence Reactance (// | ||
+ | * //Note: " | ||
+ | \\ | ||
+ | |||
+ | <m 14>Ipn ~=~ {3 * I} / {X prime prime d + X2 + X0}</ | ||
+ | \\ \\ \\ \\ | ||
+ | |||
+ | |||
+ | <m 14>Ipn ~=~ {3 * 300Amps}/ | ||
+ | </ | ||
+ | \\ | ||
+ | |||
+ | |||
+ | ---- | ||
+ | ===References=== | ||
+ | |||
+ | * [[https:// | ||
+ | * [[https:// | ||
+ | * [[https:// | ||
Copyright © Alan Shea, 2011-2025